- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000100000000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Agarwal (1)
-
Butler, Landon (1)
-
Erginbas, Yigit_Efe (1)
-
Kong, Justin_Singh (1)
-
Pedarsani, Ramtin (1)
-
Ramchandran, Kannan (1)
-
Yu, Bin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Large language models (LLMs) have revolution- ized machine learning due to their ability to cap- ture complex interactions between input features. Popular post-hoc explanation methods like SHAP provide marginal feature attributions, while their extensions to interaction importances only scale to small input lengths (≈20). We propose Spectral Ex- plainer (SPEX), a model-agnostic interaction attri- bution algorithm that efficiently scales to large input lengths (≈1000). SPEX exploits underlying nat- ural sparsity among interactions—common in real- world data—and applies a sparse Fourier transform using a channel decoding algorithm to efficiently identify important interactions. We perform exper- iments across three difficult long-context datasets that require LLMs to utilize interactions between inputs to complete the task. For large inputs, SPEX outperforms marginal attribution methods by up to 20% in terms of faithfully reconstructing LLM out- puts. Further, SPEX successfully identifies key fea- tures and interactions that strongly influence model output. For one of our datasets, HotpotQA, SPEX provides interactions that align with human annota- tions. Finally, we use our model-agnostic approach to generate explanations to demonstrate abstract rea- soning in closed-source LLMs (GPT-4o mini) and compositional reasoning in vision-language models.more » « lessFree, publicly-accessible full text available May 1, 2026
An official website of the United States government
